Time-dependent and clustering-induced phosphorescence, mechanochromism, structural-function relationships, and advanced information encryption based on isomeric effects and host-guest doping

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Sep 5:317:124449. doi: 10.1016/j.saa.2024.124449. Epub 2024 May 11.

Abstract

To explore the intrinsic mechanism of pure organic room temperature and clustering-induced phosphorescence and investigate mechanochromism and structural-function relationships, here, 4-(2-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lo-CzAD), 4-(3-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lm-CzAD), and 4-(4-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lp-CzAD) were designed and synthesized by choosing self-made carbazole and 3, 5-dicyanopyridine (DCP) unit as electron acceptor and electron donor in sequence. Compared with crystals Lm-CzAD and Lp-CzAD, crystal Lo-CzAD shows better room temperature phosphorescence (RTP) performance, with RTP lifetimes of 187.16 ms, as well as afterglows 1s, which are attributed to twisted carbazole unit and donor-acceptor (D-A) molecular conformation, big crystal density and spin orbit coupling constant ξ (S1 → T1 and S1 → T2), as well as intermolecular H type stacking and small ξ (S0 → T1). By choosing urea and PPh3 as host materials and tuning doping ratio, four doping systems were successfully constructed, significantly improving RTP performance of Lo-CzAD and Lp-CzAD, as well as showing different fluorescence and RTP. The lifetimes and afterglows of pure organic Urea/Lo-CzAD and Urea/Lp-CzAD systems are up to 478.42 ms, 5 s, 261.66 ms and 4.5 s in turn. Moreover, Lo-CzAD and Lp-CzAD show time-dependent RTP in doping systems due to monomer and aggregate dispersion, as well as clustering-induced phosphorescence. Based on the different luminescent properties, multiple information encryptions were successfully constructed.

Keywords: Anti-Kasha; Anti-counterfeiting; Host-guest doping; Mechanochromism; Room-temperature phosphorescence.