Do Acoustic Characteristics of Dysarthria in People With Parkinson's Disease Differ Across Languages?

J Speech Lang Hear Res. 2024 May 16:1-20. doi: 10.1044/2024_JSLHR-23-00525. Online ahead of print.

Abstract

Purpose: Cross-language studies suggest more similarities than differences in how dysarthria affects the speech of people with Parkinson's disease (PwPD) who speak different languages. In this study, we aimed to identify the relative contribution of acoustic variables to distinguish PwPD from controls who spoke varieties of two Romance languages, French and Portuguese.

Method: This bi-national, cross-sectional, and case-controlled study included 129 PwPD and 124 healthy controls who spoke French or Portuguese. All participants underwent the same clinical examinations, voice/speech recordings, and self-assessment questionnaires. PwPD were evaluated off and on optimal medication. Inferential analyses included Disease (controls vs. PwPD) and Language (French vs. Portuguese) as factors, and random decision forest algorithms identified relevant acoustic variables able to distinguish participants: (a) by language (French vs. Portuguese) and (b) by clinical status (PwPD on and off medication vs. controls).

Results: French-speaking and Portuguese-speaking individuals were distinguished from each other with over 90% accuracy by five acoustic variables (the mean fundamental frequency and the shimmer of the sustained vowel /a/ production, the oral diadochokinesis performance index, the relative sound level pressure and the relative sound pressure level standard deviation of the text reading). A distinct set of parameters discriminated between controls and PwPD: for men, maximum phonation time and the oral diadochokinesis speech proportion were the most significant variables; for women, variables calculated from the oral diadochokinesis were the most discriminative.

Conclusions: Acoustic variables related to phonation and voice quality distinguished between speakers of the two languages. Variables related to pneumophonic coordination and articulation rate were the more effective in distinguishing PwPD from controls. Thus, our research findings support that respiration and diadochokinesis tasks appear to be the most appropriate to pinpoint signs of dysarthria, which are largely homogeneous and language-universal. In contrast, identifying language-specific variables with the speech tasks and acoustic variables studied was less conclusive.