Terrestrial locomotion characteristics of climbing perch (Anabas testudineus)

J Exp Biol. 2024 May 16:jeb.247238. doi: 10.1242/jeb.247238. Online ahead of print.

Abstract

The evolution and utilization of limbs facilitated earlier terrestrial vertebrate movement on land, but little is known about how other lateral structures enhance terrestrial locomotion in amphibian fishes without terrestrialized limb structures. Climbing perch (Anabas testudineus) exhibit sustained terrestrial locomotion using uniaxial rotating gill covers instead of appendages. To investigate the role of such simple lateral structures in terrestrial locomotion and the motion generating mechanism of the corresponding locomotor structure configuration (gill covers and body undulation), we measured the terrestrial kinematics of climbing perch and quantitatively analysed its motion characteristics. Here, the digitalized locomotor kinematics show a unique body postural adjustment ability that enables the regulation of the posture of the caudal peduncle for converting lateral bending force into propulsion. An analysis of the coordination characteristics demonstrated that the motion of the gill cover is kinematically independent of axial undulation, suggesting that the gill cover functions as an anchored simple support pole while axial undulation actively mediates body posture and produces propulsive force. The two identified feature-shapes explained more than 87% of the complex lateral undulation in multistage locomotion. The kinematic characteristics enhance our understanding of the underlying coordinating mechanism corresponding to locomotor configurations. Our work provides quantitative insight into the terrestrial locomotor adaptation of climbing perch and sheds light on terrestrial motion potential of locomotor configurations containing a typical aquatic body and restricted lateral structure.

Keywords: Climbing perch; Dimensionality reduction; Kinematic characteristics; Terrestrial locomotion; Terrestrial orientation.