Differential associations of five riverine organism groups with multiple stressors

Sci Total Environ. 2024 Jul 15:934:173105. doi: 10.1016/j.scitotenv.2024.173105. Epub 2024 May 14.

Abstract

The decline of river and stream biodiversity results from multiple simultaneous occuring stressors, yet few studies explore responses explore responses across various taxonomic groups at the same locations. In this study, we address this shortcoming by using a coherent data set to study the association of nine commonly occurring stressors (five chemical, one morphological and three hydraulic) with five taxonomic groups (bacteria, fungi, diatoms, macro-invertebrates and fish). According to studies on single taxonomic groups, we hypothesise that gradients of chemical stressors structure community composition of all taxonomic groups, while gradients of hydraulic and morphological stressors are mainly related to larger organisms such as benthic macro-invertebrates and fish. Organisms were sampled over two years at 20 sites in two catchments: a recently restored urban lowland catchment (Boye) and a moderately disturbed rural mountainous catchment (Kinzig). Dissimilarity matrices were computed for each taxonomic group within a catchment. Taxonomic dissimilarities between sites were linked to stressor dissimilarities using multivariable Generalized Linear Mixed Models. Stressor gradients were longer in the Boye, but did in contrast to the Kinzig not cover low stress intensities. Accordingly, responses of the taxonomic groups were stronger in the Kinzig catchment than in the recently restored Boye catchment. The discrepancy between catchments underlines that associations to stressors strongly depend on which part of the stressor gradient is covered in a catchment. All taxonomic groups were related to conductivity. Bacteria, fungi and macro-invertebrates change with dissolved oxygen, and bacteria and fungi with total nitrogen. Morphological and hydraulic stressors had minor correlations with bacteria, fungi and diatoms, while macro-invertebrates were strongly related to fine sediment and discharge, and fish to high flow peaks. The results partly support our hypotheses about the differential associations of the different taxonomic groups with the stressors.

Keywords: Bacteria; Diatoms; Fish; Fungi; Macro-invertebrates; Stressors.

MeSH terms

  • Animals
  • Bacteria / classification
  • Biodiversity*
  • Diatoms / physiology
  • Environmental Monitoring*
  • Fishes
  • Fungi
  • Invertebrates / physiology
  • Rivers* / microbiology
  • Water Pollutants, Chemical / analysis

Substances

  • Water Pollutants, Chemical