Droplet bioprinting of acellular and cell-laden structures at high-resolutions

Biofabrication. 2024 May 23;16(3). doi: 10.1088/1758-5090/ad4c09.

Abstract

Advances in digital light projection(DLP) based (bio) printers have made printing of intricate structures at high resolution possible using a wide range of photosensitive bioinks. A typical setup of a DLP bioprinter includes a vat or reservoir filled with liquid bioink, which presents challenges in terms of cost associated with bioink synthesis, high waste, and gravity-induced cell settling, contaminations, or variation in bioink viscosity during the printing process. Here, we report a vat-free, low-volume, waste-free droplet bioprinting method capable of rapidly printing 3D soft structures at high resolution using model bioinks and model cells. A multiphase many-body dissipative particle dynamics model was developed to simulate the dynamic process of droplet-based DLP printing and elucidate the roles of surface wettability and bioink viscosity. Process variables such as light intensity, photo-initiator concentration, and bioink formulations were optimized to print 3D soft structures (∼0.4-3 kPa) with a typical layer thickness of 50µm, an XY resolution of 38 ± 1.5μm and Z resolution of 237 ± 5.4µm. To demonstrate its versatility, droplet bioprinting was used to print a range of acellular 3D structures such as a lattice cube, a Mayan pyramid, a heart-shaped structure, and a microfluidic chip with endothelialized channels. Droplet bioprinting, performed using model C3H/10T1/2 cells, exhibited high viability (90%) and cell spreading. Additionally, microfluidic devices with internal channel networks lined with endothelial cells showed robust monolayer formation while osteoblast-laden constructs showed mineral deposition upon osteogenic induction. Overall, droplet bioprinting could be a low-cost, no-waste, easy-to-use, method to make customized bioprinted constructs for a range of biomedical applications.

Keywords: DLP; Droplet; bioink; bioprinting; low-volume; model; vat-free.

MeSH terms

  • Animals
  • Bioprinting* / methods
  • Cell Survival
  • Humans
  • Ink
  • Mice
  • Printing, Three-Dimensional*
  • Tissue Engineering / methods
  • Tissue Scaffolds / chemistry
  • Viscosity
  • Wettability