The dynamic response of human lungs due to underwater shock wave exposure

PLoS One. 2024 May 15;19(5):e0303325. doi: 10.1371/journal.pone.0303325. eCollection 2024.

Abstract

Since the 19th century, underwater explosions have posed a significant threat to service members. While there have been attempts to establish injury criteria for the most vulnerable organs, namely the lungs, existing criteria are highly variable due to insufficient human data and the corresponding inability to understand the underlying injury mechanisms. This study presents an experimental characterization of isolated human lung dynamics during simulated exposure to underwater shock waves. We found that the large acoustic impedance at the surface of the lung severely attenuated transmission of the shock wave into the lungs. However, the shock wave initiated large bulk pressure-volume cycles that are distinct from the response of the solid organs under similar loading. These pressure-volume cycles are due to compression of the contained gas, which we modeled with the Rayleigh-Plesset equation. The extent of these lung dynamics was dependent on physical confinement, which in real underwater blast conditions is influenced by factors such as rib cage properties and donned equipment. Findings demonstrate a potential causal mechanism for implosion injuries, which has significant implications for the understanding of primary blast lung injury due to underwater blast exposures.

MeSH terms

  • Blast Injuries* / etiology
  • Explosions
  • High-Energy Shock Waves / adverse effects
  • Humans
  • Lung Injury / etiology
  • Lung* / physiology
  • Male
  • Pressure

Grants and funding

This study was funded by contract # W81XWH-09-2-0168. The U.S. Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office. The content is solely the responsibility of the authors and does not necessarily reflect the position or policy of the U.S. government.