Misregulation of bromotyrosine compromises fertility in male Drosophila

Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2322501121. doi: 10.1073/pnas.2322501121. Epub 2024 May 15.

Abstract

Biological regulation often depends on reversible reactions such as phosphorylation, acylation, methylation, and glycosylation, but rarely halogenation. A notable exception is the iodination and deiodination of thyroid hormones. Here, we report detection of bromotyrosine and its subsequent debromination during Drosophila spermatogenesis. Bromotyrosine is not evident when Drosophila express a native flavin-dependent dehalogenase that is homologous to the enzyme responsible for iodide salvage from iodotyrosine in mammals. Deletion or suppression of the dehalogenase-encoding condet (cdt) gene in Drosophila allows bromotyrosine to accumulate with no detectable chloro- or iodotyrosine. The presence of bromotyrosine in the cdt mutant males disrupts sperm individualization and results in decreased fertility. Transgenic expression of the cdt gene in late-staged germ cells rescues this defect and enhances tolerance of male flies to bromotyrosine. These results are consistent with reversible halogenation affecting Drosophila spermatogenesis in a process that had previously eluded metabolomic, proteomic, and genomic analyses.

Keywords: Drosophila; bromotyrosine; dehalogenation; disruption of spermatogenesis; flavoprotein.

MeSH terms

  • Animals
  • Animals, Genetically Modified
  • Drosophila / genetics
  • Drosophila / metabolism
  • Drosophila Proteins* / genetics
  • Drosophila Proteins* / metabolism
  • Drosophila melanogaster / genetics
  • Drosophila melanogaster / metabolism
  • Fertility*
  • Hydrolases / genetics
  • Hydrolases / metabolism
  • Male
  • Spermatogenesis*
  • Tyrosine* / analogs & derivatives
  • Tyrosine* / metabolism