Deep-learning enhanced high-quality imaging in metalens-integrated camera

Opt Lett. 2024 May 15;49(10):2853-2856. doi: 10.1364/OL.521393.

Abstract

Because of their ultra-light, ultra-thin, and flexible design, metalenses exhibit significant potential in the development of highly integrated cameras. However, the performances of metalens-integrated camera are constrained by their fixed architectures. Here we proposed a high-quality imaging method based on deep learning to overcome this constraint. We employed a multi-scale convolutional neural network (MSCNN) to train an extensive pair of high-quality and low-quality images obtained from a convolutional imaging model. Through our method, the imaging resolution, contrast, and distortion have all been improved, resulting in a noticeable overall image quality with SSIM over 0.9 and an improvement in PSNR over 3 dB. Our approach enables cameras to combine the advantages of high integration with enhanced imaging performances, revealing tremendous potential for a future groundbreaking imaging technology.