Formation of partially embedded Au nanostructures: Ion beam irradiation on thin film

Microsc Res Tech. 2024 May 15. doi: 10.1002/jemt.24598. Online ahead of print.

Abstract

The Au partially embedded nanostructure (PEN) is synthesized by ion irradiation on an Au thin film deposited on a glass substrate using a 50 keV Ar ion. Scanning electron microscopy results show ion beam-induced restructuring from irregularly shaped nanostructures (NSs) to spherical Au NSs, and further ion irradiation leads to the formation of well-separated spherical nanoparticles. Higuchi's algorithm of surface analysis is utilized to find the evolution of surface morphology with ion irradiation in terms of the Hurst exponent and fractal dimension. The Au PEN is evidenced by Rutherford backscattering spectrometry and optical studies. Also, the depth of the mechanism behind synthesized PEN is explained on the basis of theoretical simulations, namely, a unified thermal spike and a Monte Carlo simulation consisting of dynamic compositional changes (TRIDYN). Another set of plasmonic NSs was formed on the surface by thermal annealing of the Au film on the substrate. Glucose sensing has been studied on the two types of plasmonic layers: nanoparticles on the surface and PEN. The results reveal the sensing responses of both types of plasmonic layers. However, PEN retains its plasmonic behavior as the NSs are still present after washing with water, which demonstrates the potential for reusability. RESEARCH HIGHLIGHTS: Synthesis of PENs by ion irradiation Utilization of Higuchi's algorithm to explore the surface morphology. Unified thermal spike and TRIDYN simulations being used to explain the results. Glucose is only used as a test case for reusability of substrate.

Keywords: Higuchi's algorithm; ion beam irradiation; partially embedded nanostructures (PEN); plasmonic layer; reusability; thermal spike simulation.