Exercise-induced cortical disinhibition mediates the relationship between fitness and memory in older adults

J Physiol. 2024 May 15. doi: 10.1113/JP285537. Online ahead of print.

Abstract

Regular exercise benefits learning and memory in older adults, but the neural mechanisms mediating these effects remain unclear. Evidence in young adults indicates that acute exercise creates a favourable environment for synaptic plasticity by enhancing cortical disinhibition. As such, we investigated whether plasticity-related disinhibition mediated the relationship between cardiorespiratory fitness and memory function in healthy older adults (n = 16, mean age = 66.06). Participants completed a graded maximal exercise test and assessments of visual and verbal memory, followed by two counterbalanced sessions involving 20 min of either high-intensity interval training exercise or rest. Disinhibition was measured following intermittent theta burst stimulation via paired-pulse transcranial magnetic stimulation. In line with our hypotheses, we observed a positive correlation between cardiorespiratory fitness and verbal memory, which was mediated by plasticity-related cortical disinhibition. Our novel finding implicates cortical disinhibition as a mechanism through which the effects of acute bouts of exercise may translate to improved memory in older adults. This finding extends current understanding of the physiological mechanisms underlying the positive influence of cardiorespiratory fitness for memory function in older adults, and further highlights the importance of promoting exercise engagement to maintain cognitive health in later life. KEY POINTS: There are well established benefits of regular exercise for memory function in older adults, but the mechanisms are unclear. Cortical disinhibition is important for laying down new memories, and is enhanced following acute exercise in young adults, suggesting it is a potential mechanism underlying these benefits in ageing. Older adults completed a fitness test and assessments of memory, followed by two sessions involving either 20 min of exercise or rest. Disinhibition was measured following intermittent theta burst stimulation via paired-pulse transcranial magnetic stimulation. Cardiorespiratory fitness was positively associated with memory performance. Higher fitness was associated with enhanced cortical disinhibition following acute exercise. Cortical disinhibition completely mediated the relationship between fitness and memory. This novel finding provides a mechanistic account for the positive influence of cardiorespiratory fitness on memory in later life, and emphasises the importance of regular exercise for cognitive health in older populations.

Keywords: TMS; acute exercise; cardiorespiratory fitness; inhibition; memory; older adults; synaptic plasticity.