Structure of a human monoclonal antibody in complex with Outer surface protein C (OspC) of the Lyme disease spirochete, Borreliella burgdorferi

bioRxiv [Preprint]. 2024 May 3:2024.04.29.591597. doi: 10.1101/2024.04.29.591597.

Abstract

Lyme disease is a tick-borne, multisystem infection caused by the spirochete, Borreliella burgdorferi . Although antibodies have been implicated in the resolution of Lyme disease, the specific B cell epitopes targeted during human infections remain largely unknown. In this study, we characterized and defined the structural epitope of a patient-derived bactericidal monoclonal IgG ("B11") against Outer surface protein C (OspC), a homodimeric lipoprotein necessary for B. burgdorferi tick-mediated transmission and early-stage colonization of vertebrate hosts. High-resolution epitope mapping was accomplished through hydrogen deuterium exchange-mass spectrometry (HDX-MS) and X-ray crystallography. Structural analysis of B11 Fab-OspC A complexes revealed the B11 Fabs associated in a 1:1 stoichiometry with the lateral faces of OspC A homodimers such that the antibodies are essentially positioned perpendicular to the spirochete's outer surface. B11's primary contacts reside within the membrane proximal regions of α-helices 1 and 6 and adjacent loops 5 and 6 in one OspC A monomer. In addition, B11 spans the OspC A dimer interface, engaging opposing α-helix 1', α-helix 2', and loop 2-3' in the second OspC A monomer. The B11-OspC A structure is reminiscent of the recently solved mouse transmission blocking monoclonal IgG B5 in complex with OspC A , indicating a mode of engagement with OspC that is conserved across species. In conclusion, we provide the first detailed insight into the interaction between a functional human antibody and an immunodominant Lyme disease antigen long considered an important vaccine target.

Publication types

  • Preprint