Post-milking application of a Lacticaseibacillus paracasei strain impacts bovine teat microbiota while preserving the mammary gland physiology and immunity

Benef Microbes. 2024 May 14;15(3):275-291. doi: 10.1163/18762891-bja00014.

Abstract

Bovine mastitis (BM) is a major disease in dairy industry. The current approaches - mainly antibiotic treatments - are not entirely effective and may contribute to antimicrobial resistance dissemination, rising the need for alternative treatment. The present study aims to evaluate the impact of post-milking application of Lacticaseibacillus paracasei CIRM BIA 1542 (Lp1542) on the teat skin (TS) of 20 Holstein cows in mid lactation, in order to reinforce the barrier effect of the microbiota naturally present on the teat. Treatment (Lp1542, iodine or no treatment) was applied post-milking twice a day on the 4 teats of healthy animals for 15 days. Blood and milk samples, and TS swabs were collected at day (D)1, D8, D15 and D26 before morning milking and at D15 before evening milking (D15E) to evaluate Lp1542 impact at the microbial, immune and physiological levels. Lp1542 treatment resulted in a higher lactic acid bacteria and total microbial populations on TS and in foremilk (FM) at D15(E) compared with iodine treatment. Metabarcoding analysis revealed changes in the composition of TS and FM microbiota, beyond a higher Lacticaseibacillus abundance. This included a higher abundance of Actinobacteriota, including Bifidobacterium, and a lower abundance of Pseudomonadota on TS of Lp1542 compared with iodine-treated quarters. In addition, Lp1542 treatment did not trigger any major inflammatory response in the mammary gland, except interleukin 8 production and expression which tended to be slightly higher in Lp1542-treated cows compared with the others. Finally, Lp1542 treatment had no impact on the mammary epithelium functionality (milk yield and composition) and integrity (epithelial cell exfoliation into milk and milk Na+/K+ ratio). Altogether, these results indicate that a topical treatment with Lp1542 is safe with regard to mammary gland physiology and immune system, while impacting its microbiota, inviting us to further explore its effectiveness for mastitis prevention.

MeSH terms

  • Animals
  • Cattle / microbiology
  • Dairying
  • Female
  • Lactation
  • Lacticaseibacillus paracasei* / physiology
  • Mammary Glands, Animal* / microbiology
  • Mastitis, Bovine* / microbiology
  • Mastitis, Bovine* / prevention & control
  • Microbiota* / drug effects
  • Milk* / microbiology
  • Probiotics / administration & dosage