Restricting angles of incidence to improve super resolution in time reversal focusing that uses metamaterial properties of a resonator array

J Acoust Soc Am. 2024 May 1;155(5):3233-3241. doi: 10.1121/10.0025987.

Abstract

Focusing waves with a spatial extent smaller than a half wavelength (i.e., super resolution or sub diffraction limit) is possible using resonators placed in the near field of time reversal (TR) focusing. While a two-dimensional (2D) Helmholtz resonator array in a three-dimensional reverberant environment has limited ability to produce a high-resolution spatial focus in the TR focusing of audible sound, it is shown that acoustic waves propagating out-of-plane with the resonator array are not as strongly affected by the smaller effective wavelength induced by the resonator array, partially negating the effect of the resonators. A physical 2D waveguide is shown to limit the out-of-plane propagation, leading to improved resolution. It is also shown that post processing using an orthogonal particle velocity decomposition of a spatial scan of the focusing can filter out-of-plane particle motion in the near field of the array, which bypasses the effect of the unwanted third spatial dimension of propagation. The spatial resolution in a reverberant environment is shown to improve in the presence of a 2D Helmholtz resonator array and then further improve by adding a 2D waveguide. The resolution among the resonator array is better still without using a waveguide and instead using the partial-pressure reconstruction.