In Situ Self-Assembled Active and Stable Ir@MnOx/La0.7Sr0.3Cr0.9Ir0.1O3-δ Interfaces for CO2 Electrolysis

Angew Chem Int Ed Engl. 2024 May 13:e202404861. doi: 10.1002/anie.202404861. Online ahead of print.

Abstract

Solid oxide electrolysis cells are prospective approaches for CO2 utilization but face significant challenges due to the sluggish reaction kinetics and poor stability of the fuel electrodes. Herein, we strategically addressed the long-standing trade-off phenomenon between enhanced exsolution and improved structural stability via topotactic ion exchange. The surface dynamic reconstruction of the MnOx/La0.7Sr0.3Cr0.9Ir0.1O3-δ (LSCIr) catalyst was visualized at the atomic scale. Compared with the Ir@LSCIr interface, the in situ self-assembled Ir@MnOx/LSCIr interface exhibited greater CO2 activation and easily removable carbonate intermediates, thus reached a 42% improvement in CO2 electrolysis performance at 1.6 V. Furthermore, an improved CO2 electrolysis stability was achieved due to the uniformly wrapped MnOx shell of the Ir@MnOx/LSCIr cathode. Our approach enables a detailed understanding of the dynamic microstructure evolution at active interfaces and provides a roadmap for the rational design and evaluation of efficient metal/oxide catalysts for CO2 electrolysis.

Keywords: CO2 Electrolysis; In situ interfacial engineering; Solid oxide electrolysis cells; Structural stability; Topotactic ion exchange.