The mechanism of biofilm detachment in porous medium under flow field

Biomicrofluidics. 2024 May 6;18(3):034103. doi: 10.1063/5.0203061. eCollection 2024 May.

Abstract

Biofilms are communities formed by bacteria adhering to surfaces, widely present in porous medium, and their growth can lead to clogging. Our experiment finds that under certain flow conditions, biofilms detach in pores and form a dynamically changing flow path. We define detachment that occurs far from the boundary of the flow path (with a distance greater than 200 μm) as internal detachment and detachment that occurs at the boundary of the flow path as external detachment. To understand the mechanism of biofilm detachment, we study the detachment behaviors of the Bacillus subtilis biofilm in a porous medium in a microfluidic device, where Bacillus subtilis strain is triple fluorescent labeled, which can represent three main phenotypes during the biofilm formation: motile cells, matrix-producing cells, and spores. We find that slow small-scale internal detachment occurs in regions with very few motile cells and matrix-producing cells, and bacterial movement in these areas is disordered. The increase in the number of matrix-producing cells induces clogging, and after clogging, the rapid detachment of the bulk internal biofilm occurs due to the increased pressure difference at the inlet and outlet. When both internal and external detachments occur simultaneously, the number of matrix-producing cells in the internal detachment area is 2.5 times that in the external detachment area. The results indicate that biofilm detachment occurs in areas with fewer matrix-producing cells, as matrix-producing cells can help resist detachment by secreting extracellular polymeric substances (EPSs).