Study of the Effects of Remote Heavy Group Vibrations on the Temperature Dependence of Hydride Kinetic Isotope Effects of the NADH/NAD+ Model Reactions

ACS Omega. 2024 Apr 24;9(18):20593-20600. doi: 10.1021/acsomega.4c02383. eCollection 2024 May 7.

Abstract

It has recently been observed that the temperature(T)-dependence of KIEs in H-tunneling reactions, characterized by isotopic activation energy difference (ΔEa = EaD - EaH), is correlated to the rigidity of the tunneling ready states (TRSs) in enzymes. A more rigid system with narrowly distributed H-donor-acceptor distances (DADs) at the TRSs gives rise to a weaker T-dependence of KIEs (i.e., a smaller ΔEa). Theoreticians have attempted to develop new H-tunneling models to explain this, but none has been universally accepted. In order to further understand the observations in enzymes and provide useful data to build new theoretical models, we have studied the electronic and solvent effects on ΔEa's for the hydride-tunneling reactions of NADH/NAD+ analogues. We found that a tighter charge-transfer (CT) complex system gives rises to a smaller ΔEa, consistent with the enzyme observations. In this paper, we use the remote heavy group (R) vibrational effects to mediate the system rigidity to study the rigidity-ΔEa relationship. The specific hypothesis is that slower vibrations of a heavier remote group would broaden the DAD distributions and increase the ΔEa value. Four NADH/NAD+ systems were studied in acetonitrile but most of such heavy group vibrations do not appear to significantly increase the ΔEa. The remote heavy group vibrations in these systems may have not affected the CT complexation rigidity to a degree that can significantly increase the DADs, and further, the ΔEa values.