Biomechanical changes in the proximal femur before and after removal of femoral neck system

J Orthop Surg Res. 2024 May 12;19(1):290. doi: 10.1186/s13018-024-04769-x.

Abstract

Background: As an innovative internal fixation system, FNS (femoral neck system) is increasingly being utilized by surgeons for the treatment of femoral neck fractures. At present, there have been numerous finite element analysis experiments studying the immediate stability of FNS and CSS in treating femoral neck fractures. However, there is scarce mechanical analysis available regarding the effects post internal fixation removal. This study aimed to investigate the alterations in mechanical parameters of the proximal femur before and after the removal of FNS (femoral neck system), and to assess potential distinctions in indicators following the extraction of CSS (Cannulated Screws).

Methods: A proximal femur model was reconstructed using finite element numerical techniques. The models for CSS and FNS were formulated utilizing characteristics and parametric definitions. The internal fixation was combined with a normal proximal femur model to simulate the healing state after fracture surgery. Within the framework of static analysis, consistent stress burdens were applied across the entirety of the models. The total deformation and equivalent stress of the proximal femur were recorded before and after the removal of internal fixation.

Results: Under the standing condition, the total deformation of the model before and after removing CSS was 0.99 mm and 1.10 mm, respectively, indicating an increase of 12%. The total deformation of the model before and after removing FNS was 0.65 mm and 0.76 mm, respectively, indicating an increase of 17%. The equivalent stress for CSS and FNS were 55.21 MPa and 250.67 MPa, respectively. The average equivalent stress on the cross-section of the femoral neck before and after removal of CSS was 7.76 MPa and 6.11 MPa, respectively. The average equivalent stress on the cross-section of the femoral neck before and after removal of FNS was 9.89 MPa and 8.79 MPa, respectively.

Conclusions: The retention of internal fixation may contribute to improved stability of the proximal femur. However, there still existed risks of stress concentration in internal fixation and stress shielding in the proximal femur. Compared to CSS, the removal of FNS results in larger bone tunnels and insufficient model stability. Further clinical interventions are recommended to address this issue.

Keywords: Biomechanical effect; Cannulated screw removal; Femoral neck system; Finite element analysis.

MeSH terms

  • Biomechanical Phenomena
  • Bone Screws*
  • Device Removal / methods
  • Femoral Neck Fractures* / surgery
  • Femur / surgery
  • Femur Neck / diagnostic imaging
  • Femur Neck / surgery
  • Finite Element Analysis*
  • Fracture Fixation, Internal* / methods
  • Humans
  • Stress, Mechanical