Selection by differential survival among marine animals in the Phanerozoic

J Theor Biol. 2024 May 11:590:111849. doi: 10.1016/j.jtbi.2024.111849. Online ahead of print.

Abstract

The Gaia hypothesis posits that the Earth and its biosphere function as a single self-stabilizing system, but a key challenge is explaining how this could have arisen through Darwinian evolution. One theory is that of "selection by differential survival," in which a clade's extinction probability decreases with age as it accumulates adaptations resisting environmental disturbances. While this is hard to assess during early Earth history, we can assess whether this process operated among marine animal genera throughout the Phanerozoic. To that end, we analyzed time ranges of 36,117 extinct animal genera using fossil occurrence data from the Paleobiology Database in order to calculate marine metazoan extinction age selectivity, extinction rates, and speciation rates over the Phanerozoic. We identify four signatures of selection by differential survival: lower extinction rates among older lineages, heritability and taxonomically nested propagation of extinction resistance, reduced age selectivity during rare environmental perturbations, and differential extinction rather than speciation as the primary driver of the phenomenon. Evidence for this process at lower taxonomic levels also implies its possibility for life as a whole - indeed, the possibility of Gaia.

Keywords: Darwinian evolution; Extinction selectivity; Gaia hypothesis; Metazoa; Paleobiology Database; Phanerozoic; Selection by differential survival.