Reactive layered hydroxide membrane for advanced water treatment: Micropollutant degradation and antifouling potential

Chemosphere. 2024 May 10:359:142318. doi: 10.1016/j.chemosphere.2024.142318. Online ahead of print.

Abstract

The effective removal of micropollutants by water treatment technologies remains a significant challenge. Herein, we develop a CoFe layered double hydroxide (CoFeLDH) catalytic membrane for peroxymonosulfate (PMS) activation to achieve efficient micropollutant removal with improved mass transfer rate and reaction kinetics. This study found that the CoFeLDH membrane/PMS system achieved an impressive above 98% degradation of the probe chemical ranitidine at 0.1 mM of PMS including five more micropollutants (Sulfamethoxazole, Ciprofloxacin, Carbamazepine, Acetaminophen and Bisphenol A) at satisfactory level (above 80%). Moreover, significant improvements in water flux and antifouling properties were observed, marking the membrane as a specific advancement in the removal of membrane fouling in water purification technology. The membrane demonstrated consistent degradation efficiency for several micropollutants and across a range of pH (4-9) as well as different anionic environments, thereby showing it suitability for scale-up application. The key role of reactive species such as SO4•-, and O2 - radicals in the degradation process was elucidated. This is followed by the confirmation of the occurrence of redox cycling between Co and Fe, and the presence of CoOH+ that promotes PMS activation. Over the ten cycles, the membrane could be operated with a flux recovery of up to 99.8% and maintained efficient performance over 24 h continuous operation. Finally, the efficiency in degrading micropollutants, coupled with reduced metal leaching, makes the CoFeLDH membrane as a promising technology for application in water treatment.

Keywords: Antifouling; Catalytic membrane; Layered double hydroxides (LDH); Micropollutants; Peroxymonosulfate(PMS).