Depletion of Free Chlorine and Generation of Trichloromethane in the Presence of pH Control Agents in Chlorinated Water at pH 6.5

J Food Prot. 2024 May 9;87(7):100296. doi: 10.1016/j.jfp.2024.100296. Online ahead of print.

Abstract

Chlorine is commonly used by the fresh produce industry to sanitize water and minimize pathogen cross-contamination during handling. The pH of chlorinated water is often reduced to values of pH 6-7, most commonly with citric acid to stabilize the active antimicrobial, hypochlorous acid (a form of free chlorine). Previous studies have demonstrated that citric acid reacts with chlorine to form trichloromethane, a major chlorine by-product in water and a potential human carcinogen. However, it is unclear if other pH control agents could be used in the place of citric acid to minimize the formation of trichloromethane. The objective of the present study was to determine the reactivity of organic and inorganic pH control agents, with chlorine, to generate trichloromethane. Free chlorine (∼100 mg/L) was mixed with 10 mM of each of twelve organic acids and two inorganic pH control agents (i.e., sodium acid sulfate and phosphoric acid) to effect a pH level of 6.5. Free chlorine and trichloromethane levels were measured over 3 h at 3 and 22°C. Results demonstrated that ascorbic acid, dehydroascorbic acid, citric acid, and malic acid rapidly depleted free chlorine concentrations at both 22°C and 3°C, while tartaric acid and lactic acid decreased chlorine concentrations more slowly. Other pH control agents did not significantly reduce free chlorine either at 22 or 3°C. Citric acid led to the generation of significantly higher concentrations of trichloromethane than did other acids. Chloroacetone was also found in chlorinated water in the presence of citric acid and ascorbic acid. Taking buffering capacity and pKa values into account, phosphoric acid and some organic acids may be used to replace citric acid as pH control agents in chlorinated water for washing fresh produce, to stabilize free chlorine level and reduce the generation of trichloromethane.

Keywords: Chlorine by−products; Disinfectant by−products; Inorganic acids; Organic acids; Trichloromethane.