A pilot-scale anoxic-anaerobic-anoxic-oxic combined with moving bed biofilm reactor system for advanced treatment of rural wastewater

Sci Total Environ. 2024 May 9:933:173074. doi: 10.1016/j.scitotenv.2024.173074. Online ahead of print.

Abstract

Rural domestic poses a significant challenge to treatment technologies due to significant fluctuations in both water quality, particularly in terms of carbon concentration, and quantity. Conventional biological technology, such as anaerobic-anoxic-oxic (A2O) systems, is inefficient. In this work, a continuous pilot-scale anoxic-anaerobic-anoxic-oxic (A3O) reactor with a moving bed biofilm reactor (MBBR) system was constructed and optimized to improve the treatment efficiency of rural domestic wastewater. The sludge return ratio, volume ratio of the oxic-to-anoxic zone (Voxi/Vano), step-feeding and hydraulic retention time (HRT) at low temperature were considered the main parameters for optimization. Microbial analysis was performed on both the mixed liquor and carrier of the A3O-MBBR system under initial and post-optimized conditions. The results indicated that the A3O-MBBR improved the treatment efficiency of rural domestic wastewater, especially for total phosphorus (TP), which increased by 20 % compared with that of the A2O-MBR. In addition, the removal efficiencies of nitrogen and phosphorus were further optimized, and the average concentrations of total nitrogen (TN) and TP in the effluent reached 2.46 and 0.364 mg/L, respectively, at a sludge reflux ratio of 100 or 150 %, Voxi/Vano =200 %, step-feeding of 0.5Q/0.5Q (anaerobic/anoxic) and HRT of 15 h at low temperature in the A3O-MBBR, which met standard A of GB18918-2002, China (TN < 15 mg/L, TP < 0.5 mg/L). The average rate of attaining the standard increased by 58.63 % (post optimization). The microbial analysis showed an increase in species diversity and richness after the parameters were optimized. Moreover, compared to the microbial community structure before optimization, the post-optimization exhibited a more stable microbial structure with a significant enrichment of functional bacteria. Defluviimonas, Novosphingobium and Bifidobacterium, considered as the dominant nitrification or denitrifying bacteria, were enriched in the suspended sludge of the MBBR reactor, which the relative abundance increased by 3.11 %, 3.84 %, and 3.24 %, respectively. Further analysis of the microbial community in the carrier revealed that the abundance of Nitrospira and the denitrifying bacteria carried by the carrier were much greater than those in the suspended sludge. Consequently, the microorganism cooperation between suspended sludge and biofilm might be responsible for the improved performance of the optimized A3O-MBBR.

Keywords: A(3)O-MBBR; Microbial community; Nitrogen and phosphorus removal; Optimization.