Concerning for the solvent-polarity-dependent conformational equilibrium and ESIPT mechanism in Pz3HC system: A novel insight

Spectrochim Acta A Mol Biomol Spectrosc. 2024 May 6:317:124412. doi: 10.1016/j.saa.2024.124412. Online ahead of print.

Abstract

In this report, we propose a new insight into the interaction between the solvent-polarity-dependent conformational equilibrium and excited state intramolecular proton transfer (ESIPT) behavior of Pz3HC system in four different polar solvents (polarity order: ACN > THF > TOL > CYC). Using quantum chemistry method, we first announce a coexistence mechanism between Pz3HC-1 and Pz3HC-3 in the ground state in four solvents based on the Boltzmann distribution. In particular, Pz3HC-1 is the principal configuration in non-polar solvent, but Pz3HC-3 is the principal configuration in polar solvent. In addition, the simulated fluorescence spectra interprets the negative solvatochromism effect of Pz3HC-1 and Pz3HC-3 in four solvents. The evidence from intramolecular hydrogen bonding (IHB) parameters and electronic perspective collectively confirms the light-induced IHB enhancement and intramolecular charge transfer (ICT) properties in Pz3HC-1 and Pz3HC-3, which raises the likelihood of the ESIPT process. Combining the calculation of potential energy curve (PEC) and intrinsic reaction coordinate (IRC), we demonstrate that the ESIPT ease of Pz3HC-1 in different polar solvents obeys the order of CYC > TOL > THF > ACN, while the order of ESIPT ease in Pz3HC-3 is opposite. Notably, the ESIPT process of Pz3HC-3 in CYC solvent is accompanied by the twisted intramolecular charge transfer (TICT) process. In addition, we also reveal that the enol* and keto* fluorescence peaks of Pz3HC-3 in CYC solvent are quenched by ISC and TICT process, respectively. Our work not only provides a satisfactory explanation of the novel dynamics mechanism for Pz3HC system, but also brings light to the design and application of new sensing molecules in the future.

Keywords: Boltzmann distribution; Excited state intramolecular proton transfer; Intramolecular hydrogen bonding; Intrinsic reaction coordinate; Solvent polarity.