Chemical Relationship among Genetically Authenticated Medicinal Species of Genus Angelica

Plants (Basel). 2024 Apr 30;13(9):1252. doi: 10.3390/plants13091252.

Abstract

The genus Angelica comprises various species utilized for diverse medicinal purposes, with differences attributed to the varying levels or types of inherent chemical components in each species. This study employed DNA barcode analysis and HPLC analysis to genetically authenticate and chemically classify eight medicinal Angelica species (n = 106) as well as two non-medicinal species (n = 14) that have been misused. Nucleotide sequence analysis of the nuclear internal transcribed spacer (ITS) region revealed differences ranging from 11 to 117 bp, while psbA-trnH showed variances of 3 to 95 bp, respectively. Phylogenetic analysis grouped all samples except Angelica sinensis into the same cluster, with some counterfeits forming separate clusters. Verification using the NCBI database confirmed the feasibility of species identification. For chemical identification, a robust quantitative HPLC analysis method was developed for 46 marker compounds. Subsequently, two A. reflexa-specific and seven A. biserrata-specific marker compounds were identified, alongside non-specific markers. Moreover, chemometric clustering analysis reflecting differences in chemical content between species revealed that most samples formed distinct clusters according to the plant species. However, some samples formed mixed clusters containing different species. These findings offer crucial insights for the standardization and quality control of medicinal Angelica species.

Keywords: DNA barcoding; chemotaxonomic classification; high-performance liquid chromatography; medicinal Angelica species; quantitative analysis.