Effect of Chitosan and Hyperbranched Poly-L-Lysine Treatment on Quality of Cucumber (Cucumis sativus L.) during Storage

Foods. 2024 Apr 27;13(9):1354. doi: 10.3390/foods13091354.

Abstract

To enhance the storage time of cucumbers, this research investigated the impact of chitosan (CS) and hyperbranched poly-L-lysine (HBPL) on the quality and nutritional attributes of cucumbers when stored at a temperature of 25 °C. The results demonstrated that sensory evaluation scores for cucumbers treated with a CS-HBPL combination were significantly higher than the control (CK), CS, and HBPL groups. On the 18th day of storage, cucumbers in the CK group exhibited significant decay and softening; however, there was a decrease in hardness observed in the CS-HBPL group and no decay or noticeable sour taste was detected. Furthermore, compared to the CK group, treatment with CS-HBPL effectively delayed cucumber decay and weight loss rate while significantly inhibiting decreases in cucumber hardness and growth of surface microorganisms. Additionally, it substantially reduced losses of soluble protein content as well as vitamin C (Vc), reducing sugars, and total phenolic compounds within cucumbers, which were 4.7 mg/g, 4.7 mg/g, 0.94 mg/g, and 0.52 mg/kg, respectively. Moreover, compared to the CK group, combined treatment with CS-HBPL significantly inhibited malondialdehyde (MDA) accumulation and reducing relative electrolyte permeability within cucumbers, which were 1.45 μmol·g-1FW and 29.82%. Furthermore, it notably enhanced activities of superoxide dismutase (SOD) and catalase (CAT), while exerting a significant inhibitory effect on polyphenol oxidase (PPO). In summary, the combined CS-HBPL treatment successfully prolonged cucumber shelf life at room temperature, enabling new possibilities for extending cucumber shelf life.

Keywords: chitosan; cucumber; hyperbranched poly-L-lysine; preservation.