Microstructure and Properties of Pressureless-Sintered Zirconium Carbide Ceramics with MoSi2 Addition

Materials (Basel). 2024 May 5;17(9):2155. doi: 10.3390/ma17092155.

Abstract

Zirconium carbide (ZrC) ceramics have a high melting point, low neutron absorption cross section, and excellent resistance to the impact of fission products and are considered to be one of the best candidate materials for fourth-generation nuclear energy systems. ZrC ceramics with a high relative density of 99.1% were successfully prepared via pressureless sintering using a small amount of MoSi2 as an additive. The influence of the MoSi2 content on the densification behavior, microstructure, mechanical properties, and thermal properties of ZrC ceramics was systematically investigated. The results show that the densification of ZrC was significantly enhanced by the introduction of MoSi2 due to the formation of a liquid phase during sintering. In addition, the ZrC grains were refined due to the pinning effect of the generated silicon carbide. The flexural strength and Vickers hardness of ZrC ceramics with 2.5 vol% MoSi2 sintered at 1850 °C were 408 ± 12 MPa and 17.1 GPa, respectively, which were approximately 30% and 10% higher compared to the samples without the addition of MoSi2. The improved mechanical properties were mainly attributed to the high relative density (99.1%) and refined microstructure.

Keywords: ZrC; mechanical properties; pressureless sintering; thermal properties.