Inside the Borate Anomaly: Leveraging a Predictive Modelling Approach to Navigate Complex Composition-Structure-Property Relationships in Oxyhalide Borate Glasses

Materials (Basel). 2024 Apr 28;17(9):2073. doi: 10.3390/ma17092073.

Abstract

This study employs a systematic and predictive modelling approach to investigate the structure and properties of multi-component borate glasses. In particular, this work is focused on understanding the individual and interaction effects of multiple constituents on several material properties. By leveraging advanced modeling techniques, this work examines how the inclusion and variation of B2O3, CaF2, TiO2, ZnO, and Na2CO3 influence the glass network, with particular attention to modifier fractions ≥ 30 mol%. This research addresses the gap in knowledge regarding the complex behavior of borate glasses in this high modifier fraction range, known as the borate anomaly, where prediction of glass structure and properties becomes particularly challenging. The use of a design of mixtures (DoM) approach facilitated the generation of polynomial equations indicating the influence of mixture components on various responses, enabling the prediction and optimization of glass properties over broad compositional ranges despite being within the anomalous region. This methodical approach not only advances our understanding of borate glass systems but also underscores the importance of predictive modelling in the accelerated design and development of novel glass materials for diverse applications.

Keywords: borate anomaly; borate glass; design of mixtures; optimization; predictive modelling.