Minimum velocity threshold in response to the free-weight back squat: reliability and validity of different submaximal loading schemes

Eur J Appl Physiol. 2024 May 10. doi: 10.1007/s00421-024-05494-3. Online ahead of print.

Abstract

Purpose: To explore if mean concentric velocity (MCV) of the last repetition before set failure differs between free-weight back squat protocols with greater emphasis on metabolic accumulation vs. mechanical loading. The between-set and between-day reliability of terminal MCV obtained with these different loading schemes was also determined.

Methods: Fifteen healthy male participants (18-30 years) were included. They all were required to exhibit a relative strength ≥ 1.5 times their body mass. MCVs were obtained at one-repetition maximum (1RM) and with two submaximal protocols (metabolic emphasis: three sets of 40%1RM with blood-flow restriction vs. mechanical emphasis: three sets 80%1RM without blood-flow restriction). Participants were instructed to reach maximal intended concentric velocity in each repetition up to failure.

Results: Set failure was achieved at a faster MCV with the metabolic protocol (p < 0.05). The reliability of MCV at failure reached higher values for the metabolic loading scheme. However, while the MCV achieved at failure during the metabolic protocol was systematically higher than the MCV at 1RM (p < 0.05), this was not entirely the case for the mechanical protocol (similar to 1RM MCV during the last sets in both testing days). Finally, the absolute error derived from estimating the MCV at 1RM based on the MCV obtained at set failure with the mechanical protocol was considerably high (≥ 0.05 m/s).

Conclusion: This study indicates that MCV obtained at set failure is dependent on the specificity of the physiological demands of exercise. Thus, MCVs obtained at failure with submaximal loads should not be used to estimate 1RM MCV.

Keywords: Fatigue; Minimum velocity threshold; Resistance exercise; Velocity-based training.