An activatable fluorescence probe for rapid detection and in situ imaging of β-galactosidase activity in cabbage roots under heavy metal stress

Food Chem. 2024 May 6:452:139557. doi: 10.1016/j.foodchem.2024.139557. Online ahead of print.

Abstract

β-Galactosidase (β-gal), an enzyme related to cell wall degradation, plays an important role in regulating cell wall metabolism and reconstruction. However, activatable fluorescence probes for the detection and imaging of β-gal fluctuations in plants have been less exploited. Herein, we report an activatable fluorescent probe based on intramolecular charge transfer (ICT), benzothiazole coumarin-bearing β-galactoside (BC-βgal), to achieve distinct in situ imaging of β-gal in plant cells. It exhibits high sensitivity and selectivity to β-gal with a fast response (8 min). BC-βgal can be used to efficiently detect the alternations of intracellular β-gal levels in cabbage root cells with considerable imaging integrity and imaging contrast. Significantly, BC-βgal can assess β-gal activity in cabbage roots under heavy metal stress (Cd2+, Cu2+, and Pb2+), revealing that β-gal activity is negatively correlated with the severity of heavy metal stress. Our work thus facilitates the study of β-gal biological mechanisms.

Keywords: Cabbage root; Fluorescence probe; Imaging; Metal stress; β-Galactosidase.