Synchronous Switching Strategy to Enhance the Real-Time Powering and Charging Performance of Triboelectric Nanogenerator

Adv Mater. 2024 May 10:e2403361. doi: 10.1002/adma.202403361. Online ahead of print.

Abstract

Triboelectric nanogenerators (TENGs) are of great significance as sustainable power sources that harvest energy from the human body and environment. Nevertheless, due to TENG's impedance-dependent output voltage characteristics, in traditional strategy (TS), real-timely powering a sensor with TENG has a poor sensing on/off ratio (or response), and directly charging a capacitor with TENG shows a low charging efficiency. This degraded real-time powering and charging performance of TENG compared to a commercial constant voltage source has been a huge challenge of the TENG field for a long time. Here, we propose a synchronous switching strategy (SSS) for TENG to real-timely power sensors or charge capacitors without degrading its performance. Compared with TS, this new strategy enables sensors to have 5-7 times sensing on/off ratio enhancement when using TENG as a power source, reaching the powering ability of a commercial constant voltage source, it makes the powering performance of TENG stable under different driving frequency, improving the powering robustness of TENG. In addition, compared with TS, SSS can also enhance the charging efficiency of TENG in every charging cycle by up to 2.4 times when charging capacitors. This work contributes to real-timely powering or charging the distributed, mobile and wireless electronics using TENG. This article is protected by copyright. All rights reserved.

Keywords: charging performance of TENG; powering performance of TENG; real‐time power source; synchronous switching strategy; triboelectric nanogenerator.