Diffusion behavior of rhodamine 6G in single octadecylsilyl-functionalized silica particle revealed by fluorescence correlation spectroscopy

Anal Sci. 2024 May 10. doi: 10.1007/s44211-024-00583-x. Online ahead of print.

Abstract

We investigated the diffusion behavior of rhodamine 6G (Rh6G) within single octadecylsilyl-functionalized (ODS) silica particle in an acetonitrile (ACN)/water system using fluorescence correlation spectroscopy (FCS). FCS measurements were conducted at the center of the particle to exclusively determine the intraparticle diffusion coefficient (D). The obtained D values were analyzed based on a pore and surface diffusion model, the results of which indicate that surface diffusion primarily governs the intraparticle diffusion of Rh6G. Furthermore, an increase in the concentration of ACN (CACN) resulted in a corresponding increase in the surface diffusion coefficient (Ds), whereas the addition of NaCl did not significantly affect the Ds values. We attributed this dependence of Ds to the dielectric constant change in the interfacial liquid phase formed on the ODS layer. Specially, Ds values of (4.0 ± 0.5) × 10-7, (7.7 ± 1.1) × 10-7, (1.0 ± 0.3) × 10-6, and (1.1 ± 0.2) × 10-6 cm2 s-1 were obtained for CACN = 20, 30, 40, and 50 vol%, respectively. We anticipate that this approach will contribute to advancing research on intraparticle mass transfer mechanisms.

Keywords: Fluorescence correlation spectroscopy; Intrapartcle diffusion; Octadecylsilyl; Pore diffusion; Rhodamine 6G; Surface diffusion.