Interfacing Langmuir-Blodgett and Pickering Emulsions for the Synthesis of 2D Nanostructured Films: Applications in Copper Ion Adsorption

Nanomaterials (Basel). 2024 May 6;14(9):809. doi: 10.3390/nano14090809.

Abstract

This research focuses on developing a 2D thin film comprising a monolayer of silica nanoparticles functionalized with polyethyleneimine (PEI), achieved through a novel integration of Langmuir-Blodgett (L-B) and Pickering emulsion techniques. The primary aim was to create a nanostructured film that exhibits dual functionality: iridescence and efficient metal ion adsorption, specifically Cu(II) ions. The methodology combined L-B and Pickering emulsion polymerization to assemble and stabilize a nanoparticle monolayer at an oil/water interface, which was then polymerized under UV radiation to form an asymmetrically structured film. The results demonstrate that the film possesses a high adsorption efficiency for Cu(II) ions, with the enhanced mechanical durability provided by a reinforcing layer of polyvinyl alcohol/glycerol. The advantage of combining L-B and Pickering emulsion technology is the ability to generate 2D films from functional nanoparticle monolayers that are sufficiently sturdy to be deployed in applications. The 2D film's practical applications in environmental remediation were confirmed through its ability to adsorb and recover Cu(II) ions from aqueous solutions effectively. We thus demonstrate the film's potential as a versatile tool in water treatment applications owing to its combined photonic and adsorptive properties. This work paves the way for future research on the use of nanoengineered films in environmental and possibly photonic applications focusing on enhancing the film's structural robustness and exploring its broader applicability to other pollutants and metal ions.

Keywords: Langmuir–Blodgett nanoparticle monolayers; Pickering emulsions; heavy metal ions; metal-ion adsorbents; photonic monolayers; self-assembly of nanoparticles.