Intracellular and extracellular Cyclophilin a promote cardiac fibrosis through TGF-β signaling in response to angiotensin Ⅱ

Biochem Pharmacol. 2024 May 7:225:116271. doi: 10.1016/j.bcp.2024.116271. Online ahead of print.

Abstract

Cardiac fibrosis is characterized by abnormal proliferation of cardiac fibroblasts (CFs) and ventricular remodeling, which finally leads to heart failure. Inflammation and oxidative stress play a central role in the development of cardiac fibrosis. CyPA (Cyclophilin A) is a main proinflammatory cytokine secreted under the conditions of oxidative stress. The mechanisms by which intracellular and extracellular CyPA interact with CFs are unclear. Male C57BL/6 J mice received angiotensin Ⅱ (Ang Ⅱ) or vehicle for 4 weeks. Inhibition of CyPA significantly reversed Ang Ⅱ-induced cardiac hypertrophy and fibrosis. Mechanically, TGF-β (Transforming growth factor-β) signaling was found to be an indispensable downstream factor of CyPA-mediated myofibroblast differentiation and proliferation. Furthermore, intracellular CyPA and extracellular CyPA activate TGF-β signaling through NOD-like receptor protein 3 (NLRP3) inflammasome and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, respectively. Pharmacological inhibition of CyPA and its receptor CD147 implemented by Triptolide also attenuated the expression of TGF-β signaling and cardiac fibrosis in Ang Ⅱ-model. These studies elucidate a novel mechanism by which CyPA promotes TGF-β and its downstream signaling in CFs and identify CyPA (both intracellular and extracellular) as plausible therapeutic targets for preventing or treating cardiac fibrosis induced by chronic Ang Ⅱ stimulation.

Keywords: Cardiac fibrosis; Cyclophilin A; Inflammation; Oxidative stress; Transforming growth factor-β; Triptolide.