Marine predators segregate interspecifically by space and time in a sheltered coastal bay

J Fish Biol. 2024 May 9. doi: 10.1111/jfb.15781. Online ahead of print.

Abstract

Marine predators are vital to the healthy functioning of coastal ecosystems, but to understand their roles, it is necessary to elucidate their movement ecology, particularly in relation to one another. A decade's worth of acoustic telemetry data (2011-2020) from Algoa Bay, South Africa, was investigated to determine how two mesopredatory species (teleosts: dusky kob Argyrosomus japonicus, n = 11, and leervis Lichia amia, n = 16) and two top predatory species (sharks: ragged-tooth sharks Carcharias taurus, n = 45, and white sharks Carcharodon carcharias, n = 31) used and shared this bay ecosystem. Multi-annual seasonal fidelity to the bay was exhibited by all species, but differences in residency were observed among species. Similarly, species used space in the bay differently-the teleosts moved less and had movements restricted to the central and western inshore regions of the bay. Conversely, the sharks roamed more, but detections were concentrated in the western part of the bay for C. taurus and in the eastern part of the bay for C. carcharias. Social network analysis showed that species segregated in space and time on a fine scale. However, there was some interaction observed between C. taurus, L. amia, and A. japonicus, but to varying degrees. This is likely because of strong habitat preferences exhibited by each species and predator-prey relationships between these predatory guilds. Results highlight that the sheltered marine Algoa Bay is a resource-rich environment, supporting multiple predators with different hunting strategies albeit similar prey preferences. Finally, these species are likely afforded some protection by the current Greater Addo Elephant National Park Marine Protected Area in the bay but are vulnerable to fishing pressure when they leave this ecosystem.

Keywords: Acoustic Tracking Array Platform; Algoa Bay; South Africa; acoustic telemetry; movement ecology; social network analysis.