Screening methods for thermotolerance in pollen

Ann Bot. 2024 May 7:mcae067. doi: 10.1093/aob/mcae067. Online ahead of print.

Abstract

Plant reproduction is highly susceptible to temperature stress. The development of the male gametophyte in particular represents a critical element in the reproductive cycle with high sensitivity to elevated temperatures. Various methods have been used to test the effect of temperature stress on pollen performance or to determine the degree of susceptibility of given species and genotypes. The information gained informs the development of new crop varieties suited to grow under warmer conditions arising through climate change and facilitates predicting the behavior of natural populations under these conditions. The characterization of pollen performance typically employs the terms pollen viability and pollen vigor, which, however, are not necessarily used consistently across studies. Pollen viability is a nominal parameter and is often assayed relying on cellular features as proxy to infer the capability of pollen grains to germinate and complete double fertilization. Alternatively, pollen germination can be determined through in vitro growth assays, or by monitoring the ability of pollen tubes to complete different progamic steps in vivo (ability to reach an ovule, release sperm cells, lead to seed set). Pollen vigor is an ordinal parameter that describes pollen tube growth rate or the efficiency of pollen tube growth as inferred by its morphology or growth pattern. To ensure consistent and relevant terminology, this review defines these terms and summarizes the methodologies used to assess them.

Keywords: fertilization; heat stress; plant reproduction; pollen; pollen development; pollen morphology; pollen tube; pollen viability; pollen vigor; thermosensitivity; thermotolerance.