A Magnetic Pincher for the Dynamic Measurement of the Actin Cortex Thickness in Live Cells

Methods Mol Biol. 2024:2800:115-145. doi: 10.1007/978-1-0716-3834-7_10.

Abstract

The actin cortex is an essential element of the cytoskeleton allowing cells to control and modify their shape. It is involved in cell division and migration. However, probing precisely the physical properties of the actin cortex has proved to be challenging: it is a thin and dynamic material, and its location in the cell-directly under the plasma membrane-makes it difficult to study with standard light microscopy and cell mechanics techniques. In this chapter, we present a novel protocol to probe dynamically the thickness of the cortex and its fluctuations using superparamagnetic microbeads in a uniform magnetic field. A bead ingested by the cell and another outside the cell attract each other due to dipolar forces. By tracking their position with nanometer precision, one can measure the thickness of the cortex pinched between two beads and monitor its evolution in time. We first present the set of elements necessary to realize this protocol: a magnetic field generator adapted to a specific imaging setup and the aforementioned superparamagnetic microbeads. Then we detail the different steps of a protocol that can be used on diverse cell types, adherent or not.

Keywords: Actin cortex; Cell mechanics; Dynamic measurement; Image analysis; Magnetic beads.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / metabolism
  • Actins* / metabolism
  • Animals
  • Humans
  • Magnetic Fields
  • Microspheres

Substances

  • Actins