Making waves: Power-to-X for the Water Resource Recovery Facilities of the future

Water Res. 2024 Apr 30:257:121691. doi: 10.1016/j.watres.2024.121691. Online ahead of print.

Abstract

The wastewater industry and the energy system are undergoing significant transformations to address climate change and environmental pollution. Green hydrogen, which will be mainly obtained from renewable electricity water electrolysis (Power-to-Hydrogen, PtH), has been considered as an essential energy carrier to neutralize the fluctuations of renewable energy sources. PtH, or Power-to-X (PtX), has been allocated to multiple sectors, including industry, transport and power generation. However, considering its large potential for implementation in the wastewater sector, represented by Water Resource Recovery Facilities (WRRFs), the PtX concept has been largely overlooked in terms of planning and policymaking. This paper proposes a concept to implement PtX at WRRFs, where sourcing of water, utilization of the oxygen by-product, and PtX itself can be sustainable and diversified strategies. Potential value chains of PtX are presented and illustrated in the frame of a WWRF benchmark simulation model, highlighting the applications of oxygen from PtX through pure oxygen aeration and ozone disinfection. Opportunities and challenges are highlighted briefly, and so is the prospective outlook to the future. Ultimately, it is concluded that 'coupling PtX to WRRFs' is a promising solution, which will potentially bring sustainable opportunities for both WRRFs and the energy system. Apart from regulatory and economic challenges, the limitations in coupling PtX to WRRFs mainly come from energy efficiency concerns and the complexity of the integration of the water framework and the energy system.

Keywords: Alkaline water electrolysis (AWE); Biomethanation; Micropollutant removal; Power-to-X (PtX); Pure oxygen aeration; Water-energy-nexus.