A novel remote sensing-based approach to determine loss of agricultural soils due to soil sealing - a case study in Germany

Environ Monit Assess. 2024 May 4;196(6):510. doi: 10.1007/s10661-024-12640-z.

Abstract

Soils provide habitat, regulation and utilization functions. Therefore, Germany aims to reduce soil sealing to 30 ha day - 1 by 2030 and to eliminate it by 2050. About 55 ha day - 1 of soil are damaged (average 2018-2021), but detailed information on its soil quality is lacking. This study proposes a new approach using geo-information and remote sensing data to assess agricultural soil loss in Lower Saxony and Brandenburg. Soil quality is assessed based on erosion resistance, runoff regulation, filter functions, yield potential and the Müncheberg Soil Quality Rating from 2006 to 2015. Data from the German Soil Map at a scale of 1:200,000 (BÜK 200), climate, topography, CORINE Land Cover (CLC) and Imperviousness Layer (IMCC), both provided by the Copernicus Land Monitoring Service (CLMS), are used to generate information on soil functions, potentials and agricultural soil loss due to sealing. For the first time, soil losses under arable land are assessed spatially, quantitatively and qualitatively. An estimate of the qualitative loss of agricultural soil in Germany between 2006 and 2015 is obtained by intersecting the soil evaluation results with the quantitative soil loss according to IMCC. Between 2006 and 2015, about 73,300 ha of land were sealed in Germany, affecting about 37,000 ha of agricultural soils. This corresponds to a sealing rate of 11 ha per day for Germany. In Lower Saxony and Brandenburg, agricultural soils were sealed at a rate of 1.9 ha day - 1 and 0.8 ha day - 1 respectively, removing these soils from primary land use. In Lower Saxony, 75% of soils with moderate or better biotic yield potential have been removed from primary land use, while in Brandenburg this figure is as high as 88%. Implementing this approach can help decision-makers reassess sealed land and support Germany's sustainable development strategy.

Keywords: Copernicus Land Monitoring Service; High-Resolution Imperviousness layers; Soil evaluation; Soil functions; Soil loss; Sustainable land use.

MeSH terms

  • Agriculture* / methods
  • Conservation of Natural Resources / methods
  • Environmental Monitoring* / methods
  • Germany
  • Remote Sensing Technology*
  • Soil Erosion
  • Soil* / chemistry

Substances

  • Soil