Low-loss and compact photonic lantern based on a step-index double cladding fiber

Opt Lett. 2024 May 1;49(9):2277-2280. doi: 10.1364/OL.516211.

Abstract

The fulfilment of the adiabatic criterion is indispensable for the realization of a low-loss photonic lantern (PL), concurrently imposing a stringent restriction on the taper transition length of the PL. Here, by relaxing the adiabatic criterion, a low-loss and compact PL based on a step-index double cladding fiber (SI-DCF) is theoretically proposed and experimentally demonstrated. The use of SI-DCF can reduce the mode field diameter (MFD) expansion ratio during the tapering processing and greatly decrease the taper transition length required for adiabatic tapering. We initially evaluate the variation of both MFD and effective refractive index (RI) along the fiber tapering based on three types of fiber structures, including the modified standard single-mode fiber (SSMF), the graded-index fiber (GIF), and the proposed SI-DCF. In comparison with the commonly used fiber geometry, the SI-DCF can reduce the MFD expansion ratio from 77.73% to 38.81%, leading to more than half reduction of the tapering length for both 3-mode and 6-mode PLs. Then, two kinds of SI-DCF with different core diameters are fabricated to realize a 3-mode PL. The fabricated PL possesses a 1.5 cm tapering length and less than 0.2 dB insertion loss (IL). After splicing with the commercial few-mode fiber, the PL has an average IL of 0.6 dB and more than 13 dB LP11 mode purity over the C-band. Finally, a transfer matrix measurement indicates that the fabricated PLs have a mode coupling of less than -10 dB at 1550 nm.