Efficient single-cycle mid-infrared femtosecond laser pulse generation by spectrally temporally cascaded optical parametric amplification with pump energy recycling

Opt Lett. 2024 May 1;49(9):2269-2272. doi: 10.1364/OL.519729.

Abstract

We proposed spectrally temporally cascaded optical parametric amplification (STOPA) using pump energy recycling to simultaneously increase spectral bandwidth and conversion efficiency in optical parametric amplification (OPA). Using BiB3O6 and KTiOAsO4 nonlinear crystals, near-single-cycle mid-infrared (MIR) pulses with maximum energy conversion efficiencies exceeding 25% were obtained in simulations. We successfully demonstrated sub-two-cycle, CEP-stable pulse generation at 1.8 µm using a four-step STOPA system in the experiment. This method provides a solution to solve the limitations of the gain bandwidth of nonlinear crystals and the low conversion efficiency in broadband OPA systems, which is helpful for intense attosecond pulse generation and strong laser field physics studies.