Sn/Sb-assisted alum sludge electrodes for eliminating hydrophilic organic pollutants in self-produced H2O2 electro-Fenton system: Insights into the co-oxidation mediated by 1O2 and OH(ads)

J Hazard Mater. 2024 Jun 5:471:134457. doi: 10.1016/j.jhazmat.2024.134457. Epub 2024 Apr 29.

Abstract

Few reports have focused on using particle electrodes with polar adsorbent properties in heterogeneous electro-Fenton (EF) system to improve the degradation of hydrophilic organic pollutants (HLOPs). In this study, a hydrophilic electrode Sn-Sb/AS was prepared by supporting metals Sn and Sb on alum sludge (AS), which can effectively degrade 91.68%, 92.54%, 89.62%, and 96.24% of the four types of HLOPs, chlorpyrifos (CPF), atrazine (ATZ), diuron (DIU), and glyphosate (PMG), respectively, within 40 min. The mineralization rates were 82.37%, 78.93%, 73.98%, and 85.65% for CPF, ATZ, DIU, and PMG, respectively. Based on the analysis of Electron Paramagnetic Resonance test, quenching test, and identified anthracene endoperoxide, the degradation at the cathode was attributed to non-radical oxidation via interaction with 1O2. In contrast, the anodic oxidation occurred via direct electron transfer at the anode and/or oxidation via interaction with adsorbed OH (OHads) around the particle electrodes. Furthermore, the reaction sites were calculated by Density functional theory (DFT) and Fukui function, corresponding to the electrophilic attack (fA-) of 1O2 and anodic direct oxidation, besides, the radical attack (fA0) of OH(ads). Herein, this study proposes a targeted elimination strategy for HLOPs in wastewater treatment using particle electrodes with polar adsorbent properties in EF system.

Keywords: Electrophilic attack; Hydrophilic electrode; Hydrophilic organic pollutants; Non-radical oxidation; Radical attack.