The suspension stability of nanoplastics in aquatic environments revealed using meta-analysis and machine learning

J Hazard Mater. 2024 Jun 5:471:134426. doi: 10.1016/j.jhazmat.2024.134426. Epub 2024 Apr 26.

Abstract

Nanoplastics (NPs) aggregation determines their bioavailability and risks in natural aquatic environments, which is driven by multiple environmental and polymer factors. The back propagation artificial neural network (BP-ANN) model in machine learning (R2 = 0.814) can fit the complex NPs aggregation, and the feature importance was in the order of surface charge of NPs > dissolved organic matter (DOM) > functional group of NPs > ionic strength and pH > concentration of NPs. Meta-analysis results specified low surface charge (0 ≤ |ζ| < 10 mV) of NPs, low concentration (< 1 mg/L) and low molecular weight (< 10 kg/mol) of DOM, NPs with amino groups, high ionic strength (IS > 700 mM) and acidic solution, and high concentration (≥ 20 mg/L) of NPs with smaller size (< 100 nm) contribute to NPs aggregation, which is consistent with the prediction in machine learning. Feature interaction synergistically (e.g., DOM and pH) or antagonistically (e.g., DOM and cation potential) changed NPs aggregation. Therefore, NPs were predicted to aggregate in the dry period and estuary of Poyang Lake. Research on aggregation of NPs with different particle size,shapes, and functional groups, heteroaggregation of NPs with coexisting particles and aging effects should be strengthened in the future. This study supports better assessments of the NPs fate and risks in environments.

Keywords: Aggregation; BP-ANN model; Feature importance analysis; Interactive effect; Natural aquatic environment.