Long Non-coding RNA Neat1, NLRP3 Inflammasome, and Acute Kidney Injury

J Am Soc Nephrol. 2024 Apr 30. doi: 10.1681/ASN.0000000000000362. Online ahead of print.

Abstract

Background: Acute kidney injury (AKI) is common in hospitalized patients and is associated with high mortality. Inflammation plays a key role in the pathophysiology of AKI. Long non-coding RNAs (lncRNAs) are increasingly recognized as regulators of the inflammatory and immune response, but its role in AKI remains unclear.

Methods: We explored the role of lncRNA Neat1 in (1) a cross-sectional and a longitudinal cohort of AKI in human; (2) three murine models of septic and aseptic AKI and (3) cultured C1.1 mouse kidney tubular cells.

Results: In human, hospitalized patients with AKI (n=66) demonstrated significantly increased lncRNA Neat1 levels in urinary sediment cells and buffy coat versus control participants (n=152) from a primary care clinic; and among 6 kidney transplant recipients, Neat1 levels were highest immediately after transplant surgery followed by a prompt decline to normal levels in parallel with recovery of kidney function. In mice with AKI induced by sepsis (via LPS injection or cecal ligation and puncture) and renal ischemia-reperfusion, kidney tubular Neat1 was increased versus sham-operated mice. Knockdown of Neat1 in the kidney using short hairpin RNA preserved kidney function, suppressed overexpression of the AKI biomarker NGAL, leukocyte infiltration and both intrarenal and systemic inflammatory cytokines IL-6, CCL-2 and IL-1β. In LPS-treated C1.1 cells, Neat1 was overexpressed via TLR4/NF-κB signaling, and translocated from the cell nucleus into the cytoplasm where it promoted activation of NLRP3 inflammasomes via binding with the scaffold protein Rack1. Silencing Neat1 ameliorated LPS-induced cell inflammation, whereas its overexpression upregulated IL-6 and CCL-2 expression even without LPS stimulation.

Conclusions: Our findings demonstrate a pathogenic role of Neat1 induction in human and mice during AKI with alleviation of kidney injury in 3 experimental models of septic and aseptic AKI after knockdown of Neat1. LPS/TLR4-induced Neat1 overexpression in tubular epithelial cells increases the inflammatory response by binding with the scaffold protein, Rack1, to activate NLRP3 inflammasomes.