Ambient PM2.5 exposure and rapid population aging: A double threat to public health in the Republic of Korea

Environ Res. 2024 Apr 27;252(Pt 3):119032. doi: 10.1016/j.envres.2024.119032. Online ahead of print.

Abstract

Particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) can infiltrate deep into the respiratory system, posing significant health risks. Notably, the health burden of PM2.5 is more pronounced among the older adult population. With an aging population, the public health burden attributable to PM2.5 could escalate even if the current PM2.5 level remains stable. This study evaluated the number of deaths attributable to long-term PM2.5 exposure in the Republic of Korea between 2020 and 2050 and identified the PM2.5 concentration required at least to maintain the current PM2.5 health burden. To calculate mortality for 2020-2050, we performed a health impact assessment using 3-year (2019-2021) average population-weighted PM2.5 concentrations, age-specific population and mortality rates. In 2020, 33,578 [95% confidence interval (CI) = 31,708-35,448] deaths were attributable to PM2.5 exposure. Projecting forward, if the 2019-2021 average PM2.5 level remains constant, mortality is projected to be 112,953 (95% CI = 109,963-115,943) in 2050, more than three times higher than in 2020. To maintain the same level of health burden in 2050 as in 2020, the PM2.5 concentration needs to be immediately reduced to 5.8 μg/m3. In an age-specific analysis, the proportion of older adults (ages 65+) to total mortality would increase from 83% (2020) to 96% (2050), indicating that the rising mortality is predominantly driven by the aging population. By region, the reduction of PM2.5 concentrations, which is required immediately in 2020 to have the health burden in 2050 equal to that in 2020, varied from 3.6 μg/m3 in Goheung-gun (25% reduction) to 20.8 μg/m3 in Heungdeok-gu (82% reduction). Our study emphasizes the critical need for air quality management to consider aging populations when establishing PM2.5 air quality standards, as well as their associated policies and regulations.

Keywords: Air quality management; Health impact assessment; Mortality; PM(2.5); Population aging.