Interaction between hydroxymethanesulfonic acid and several organic compounds and its atmospheric significance

J Mol Graph Model. 2024 Apr 26:130:108782. doi: 10.1016/j.jmgm.2024.108782. Online ahead of print.

Abstract

The interactions of the micro-mechanism of hydroxymethanesulfonic acid (HMSA) with the typical small organic molecule in atmospheric (X = methanol, formaldehyde, formic acid, methyl formate, dimethyl ether, acetone) has been investigated by density functional theory (DFT), quantum theory of atoms in molecules (QTAIM), Generalized Kohn-Sham Enery Decomposition Analysis (GKS-EDA) and the atmospheric clusters dynamic code (ACDC). The results of DFT show that the stable six- to eight-membered ring structures are easily formed in HMSA-X clusters. According to the topological analysis results of the AIM theory and the IRI method, a strong hydrogen bonding interaction is present in the complex. GKS-EDA results show that electrostatic energy is the main contributor to the interaction energy as it accounts for 51 %-55 % of the total attraction energy. The evaporation rates of HMSA-HMSA and HMSA-HCOOH clusters were much lower than those of the other HMSA complexes. In addition, the Gibbs energy of formation (ΔG) of HMSA-X dimers is investigated under atmosphere temperature T = 217-298 K and p = 0.19-1.0 atm, the ΔG decreased with decreasing of the atmosphere temperature and increased with the decrease of atmospheric pressure, indicating that the low temperature and high pressure may significantly facilitate to the formation of dimers.

Keywords: Atmospheric implications; Atoms in molecular (AIM); Density functional theory (DFT); Evaporation rate; Hydroxymethanesulfonic acid (HMSA).