Diabetes-related lower limb wounds: Antibiotic susceptibility pattern and biofilm formation

Saudi Pharm J. 2024 Jun;32(6):102069. doi: 10.1016/j.jsps.2024.102069. Epub 2024 Apr 14.

Abstract

The expeditious incidence of diabetes mellitus in Riyadh, Saudi Arabia, there is a significant increase in the total number of people with diabetic foot ulcers. For diabetic lower limb wound infections (DLWs) to be effectively treated, information on the prevalence of bacteria that cause in this region as well as their patterns of antibiotic resistance is significant. Growing evidence indicates that biofilm formers are present in chronic DFU and that these biofilm formers promote the emergence of multi-drug antibiotic resistant (MDR) strains and therapeutic rejection. The current study targeted to isolate bacteria from wounds caused by diabetes specifically at hospitals in Riyadh and assess the bacterium's resistance to antibiotics and propensity to develop biofilms. Totally 63 pathogenic microbes were identified from 70 patients suffering from DFU. Sixteen (25.4%) of the 63 bacterial strains were gram-positive, and 47 (74.6%) were gram-negative. Most of the gram-negative bacteria were resistant to tigecycline, nitrofurantoin, ampicillin, amoxicillin, cefalotin, and cefoxitin. Several gram-negative bacteria are susceptible to piperacillin, meropenem, amikacin, gentamicin, imipenem, ciprofloxacin, and trimethoprim. The most significant antibiotic that demonstrated 100% susceptibility to all pathogens was meropenem. Serratia marcescens and Staphylococcus aureus were shown to have significant biofilm formers. MDR bacterial strains comprised about 87.5% of the biofilm former strains. To the best of our knowledge, Riyadh, Saudi Arabia is the first region where Serratia marcescens was the most common bacteria from DFU infections. Our research findings would deliver information on evidence-based alternative strategies to develop effective treatment approaches for DFU treatment.

Keywords: Antimicrobial susceptibility testing; Biofilm formation; Diabetes Mellitus; Diabetic foot ulcer; Multidrug resistance; Riyadh.