The Role of Phase-Contrast MRI in Diagnosing Cerebrospinal Fluid Flow Abnormalities

Cureus. 2024 Mar 28;16(3):e57114. doi: 10.7759/cureus.57114. eCollection 2024 Mar.

Abstract

Background Cerebrospinal fluid (CSF) dynamics play a crucial role in maintaining the homeostasis of the central nervous system (CNS). Any disruption in CSF flow can lead to various congenital and acquired conditions, impacting neurological function and overall health. This study aims to analyze the significance of phase-contrast MRI in evaluating abnormalities in CSF flow and its diagnostic utility in various CSF-related disorders. Phase contrast MRI has emerged as a valuable tool for evaluating CSF dynamics non-invasively by examining CSF flow characteristics such as pulsatile flow patterns, hyperdynamic or hypodynamic flow, and disruptions in CSF circulation. Alterations in CSF pulsatility and stroke volume can indicate changes in intracranial compliance, vascular resistance, or CSF production and absorption rates. The findings of this study will advance our understanding of CSF physiology and its relevance in neurological pathologies, potentially leading to improved patient outcomes and management approaches. Materials and methods The study involved 36 patients and was conducted as an observational, prospective study over 18 months (October 2020 to March 2022) at the Department of Radiology, Saveetha Medical College and Hospital, Chennai. We utilized a 1.5 T Philips Multiva MRI scanner by Philips Healthcare in Amsterdam, Netherlands. The study included patients with suspected CSF flow abnormalities and abnormal MRI findings (normal pressure hydrocephalus (NPH), age-related brain atrophy, aqueduct stenosis (AS), Chiari malformation type 1, syringomyelia, or arachnoid cyst), alongside control exhibiting normal neurological symptoms and MRI results. Exclusions involved individuals with febrile seizures, neurological diseases, cerebrovascular accidents, anti-convulsive medication use, cardiac arrhythmia, or MRI contraindications. Post-processing involved analyzing stroke volume (SV), peak systolic velocity (PSV), end diastolic velocity (EDV), and mean flux. Statistical analysis was conducted using the Statistical Package for the Social Sciences (IBM SPSS Statistics for Windows, IBM Corp., Version 24.0, Armonk, NY), employing the χ2-test for categorical variables and nonparametric tests like Mann-Whitney U and Kruskal-Wallis H-tests for quantitative variables. A p-value < 0.05 was considered significant. Results The 36 patients, aged 1 to 80 years, were referred by the neurology department and categorized into four subgroups based on clinical history and conventional MRI findings: NPH, AS, age-related brain atrophy, and a normal control group. MRI CSF flowmetry evaluation focused on PSV, PDV, and SV. We found peak diastolic velocity (PDV), PSV, and average blood velocity (ABV) to be significantly higher in NPH compared to the control group (PSV, EDV, and SV: 9.96 +/- 1.73, 4.72 +/- 0.62, and 63 +/- 12.88 for NPH versus 4.8 +/- 0.39, 3.21 +/- 0.55, and 20.72 +/- 5.7 for control, respectively; p = 0.000). Conversely, patients with age-related brain atrophy and AS exhibited lower values (1.6 +/- 0.44, 1.13 +/- 0.09, and 6.33 +/- 2.08 for AS, and 2.07 +/- 0.09, 1.62 +/- 0.33, and 6.8 +/- 2.16 for age-related brain atrophy versus control; p = 0.002). Conclusion MRI CSF flowmetry emerges as a rapid, accurate, and non-invasive diagnostic tool for various neurological disorders associated with abnormal CSF flow. Additionally, this technique may aid in selecting appropriate treatment strategies.

Keywords: csf flow; edv; phase contrast mri; psv; stroke volume.