Flexible ureteroscopic treatment of kidney stones: How do the new laser systems change our concepts?

Asian J Urol. 2024 Apr;11(2):156-168. doi: 10.1016/j.ajur.2023.11.001. Epub 2024 Feb 24.

Abstract

Objective: Flexible ureteroscopy (fURS) has become a widely accepted and effective technique for treating kidney stones. With the development of new laser systems, the fURS approach has evolved significantly. This literature review aims to examine the current state of knowledge on fURS treatment of kidney stones, with a particular focus on the impact of the latest laser technologies on clinical outcomes and patient safety.

Methods: We conducted a search of the PubMed/PMC, Web of Science Core Collection, Scopus, Embase (Ovid), and Cochrane Databases for all randomized controlled trial articles on laser lithotripsy in September 2023 without time restriction.

Results: We found a total of 22 relevant pieces of literature. Holmium laser has been used for intracavitary laser lithotripsy for nearly 30 years and has become the golden standard for the treatment of urinary stones. However, the existing holmium laser cannot completely powder the stone, and the retropulsion of the stone after the laser emission and the thermal damage to the tissue have caused many problems for clinicians. The introduction of thulium fiber laser and Moses technology brings highly efficient dusting lithotripsy effect through laser innovation, limiting pulse energy and broadening pulse frequency.

Conclusion: While the holmium:yttrium-aluminum-garnet laser remains the primary choice for endoscopic laser lithotripsy, recent technological advancements hint at a potential new gold standard. Parameter range, retropulsion effect, laser fiber adaptability, and overall system performance demand comprehensive attention. The ablation efficacy of high-pulse-frequency devices relies on precise targeting, which may pose practical challenges.

Keywords: Holmium:yttrium--aluminum-garnet; Laser lithotripsy; Moses effect; Thulium laser; Urolithiasis.

Publication types

  • Review