Nanofibrous composite from chitosan-casein polyelectrolyte complex for rapid hemostasis in rat models in vivo

Int J Biol Macromol. 2024 Apr 25;269(Pt 1):131882. doi: 10.1016/j.ijbiomac.2024.131882. Online ahead of print.

Abstract

Bleeding causes ∼5.8 million deaths globally; half of the patients die if rapid hemostasis is not achieved. Here, we report a chitosan-casein (CC)-based nanofibrous polyelectrolyte complex (PEC) that could clot blood within 10 s in the rat femoral artery model in vivo. The nanofiber formation by self-assembly was also optimized for process parameters (concentration, mixing ratio, pH, and ultrasonication). Results showed that increasing the concentration of chitosan from 10 % to 90 % in the formulation increased the productivity (r = 0.99) of PECs but led to increased blood clotting time (r = 0.90) due to an increase in zeta potential (r = 0.98), fiber diameter (r = 0.93), and decreased surface porosity (r = -0.99), absorption capacity (r = -0.99). The pH also influenced the zeta potential of PEC, with an optimized pH of 8.0 ± 0.1 yielding clear nanofibers. Sonication improved the segregation of nanofibers by promoting water removal. The optimized PECs containing chitosan and casein in the ratio of 30:70 (CC30) at a pH of 8.0 and dehydration under sonication could clot the blood within 9 ± 2 s in vitro and 9 ± 2 s in rat femoral artery puncture model. The CC30 formulation did not cause any irritation or corrosion on rat skin. Histopathology and immunohistochemistry of various organs showed that CC30 was biocompatible and non-immunogenic under in vivo conditions.

Keywords: Hemostasis; Nanofiber; Self-assembly.