Early manifestation of hypophosphatemic rickets in goslings: a potential role of insufficient muscular adenosine triphosphate in motility impairment of early P-deficient geese

Poult Sci. 2024 Apr 4;103(6):103736. doi: 10.1016/j.psj.2024.103736. Online ahead of print.

Abstract

We aimed to determine the onset time of hypophosphatemic rickets and investigate the mechanism of motility impairment through adenosine triphosphate (ATP) production in goslings. Two hundred and sixteen 1-day-old male Jiangnan white geese were randomly divided into 3 groups, with 6 replicates and 12 geese per replicate. Birds were fed on 3 diets: a control diet (nonphytic phosphorus, NPP, 0.38%), a P-deficient diet (PD; NPP, 0.08%), and a high P diet (HP; NPP, 0.80%) for 14 d. Subsequently, all birds were shifted to the control diet for an additional 14 d. The cumulative incidence of lameness increased significantly (P < 0.01) starting on d 4, reaching over 80% on d 7 and 100% on d 12 in the PD group. Drinking and eating frequency decreased from d 4 and d 5, respectively, in the PD group compared to the other groups (most P < 0.01). The PD group exhibited shorter and narrower beaks, higher (worse) curvature scores of the beak and costochondral junctions, swelling caput costae, and dirtier feathers since d 4, in contrast to the control and HP groups (most P < 0.01). The HP had bigger (P < 0.05) beak and sternum sizes than the control groups on d 4 to 11. Leg muscle ATP levels were lower (P < 0.01 or 0.05) on d 4 to 11; in contrast, adenosine diphosphate (d 7-11) was higher in PD compared to the control (P < 0.05). Leg muscle ATP level had positive linear (R2 > 0.40) correlations (r > 0.60) with eating and drinking frequencies on d 7 and 11 (P < 0.01). Bone stiffness, feather cleanliness, and ATP levels recovered (P > 0.05) to the control level, whereas bone size did not recover (P < 0.05) in PD and HP after eating the control diet for 2 wk. The onset time of hypophosphatemic rickets was around 4 d in goslings, and insufficient leg muscle ATP was related to the impaired motility observed in early P-deficient geese.

Keywords: ATP; dietary phosphorus; geese; motility; rachitis.