In situ generated CdTe quantum dot-encapsulated hafnium polymer membrane to boost electrochemiluminescence analysis of tumor biomarkers

Anal Bioanal Chem. 2024 Apr 27. doi: 10.1007/s00216-024-05310-z. Online ahead of print.

Abstract

Exploring the construction of an interface with bright emission, fabulous stability, and good function to develop high-performance electrochemiluminescence (ECL) biosensors for tumor biomarkers is in high demand but faces a huge challenge. Herein, we report an oriented attachment and in situ self-assembling strategy for one-step fabrication of CdTe QD-encapsulated Hf polymer membrane onto an ITO surface (Hf-CP/CdTe QDs/APS/ITO). Hf-CP/CdTe QDs/APS/ITO is fascinating with excellent stability, high ECL emission, and specific adsorption toward ssDNA against dsDNA and mononucleotides (mNs). These interesting properties make it an ideal interface to rationally develop an immobilization-free ECL biosensor for cancer antigen 125 (CA125), used as a proof-of-concept analyte, based on target-aptamer recognition-promoted exonuclease III (Exo III)-assisted digestion. The recognition of ON by CA125 leads to the formation of CA125@ON, which hybridizes with Fc-ssDNA to switch Exo III-assisted digestion, decreasing the amount of Fc groups anchored onto the electrode's surface and blocking electron transfer. As compared to the case where CA125 was absent, significant ECL emission recovery is determined and relies on CA125 concentration. Thus, highly sensitive analysis of CA125 against other biomarkers was achieved with a limit of detection down to 2.57 pg/mL. We envision this work will provide a new path to develop ECL biosensors with excellent properties, which shows great potential for early and accurate diagnosis of cancer.

Keywords: CdTe QDs; Electrochemiluminescence; Exo III-assisted digestion; Hf polymer; Tumor biomarker.